Journal of Organometallic Chemistry, 110 (1976) C27–C29 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

ACID-CATALYZED LIGAND SUBSTITUTION ON THE COMPLEX Ni⁰ (CO)[P(C₆ H₅)₂ (CH₂)₄ P(C₆ H₅)₂]₂

B. CORAIN* and L. DE NARDO

Centro di Studio sulla Stabilita' e Reattivita' dei Composti di Coordinazione, C.N.R., Istituto di Chimica Analitica, Universita' di Padova (Italy) (Received December 17th, 1975)

Summary

Triphenylphosphite reacts with the nickel(0) complex, Ni(CO)(DPB)₂, (DPB = 1,4-bis(diphenylphosphino)butane) in dichloromethane with quantitative displacement of one DPB molecule; the rate is enhanced by acids.

The mechanism of ligand substitution reactions in the coordination sphere of coordinatively saturated metal(0) complexes is usually dissociative [1]. However, exchange of labelled CO with $Fe(CO)_5$ was also found to be acid catalyzed with CF_3 COOH, an efficient catalyst [1]. We have now observed that the complex Ni(CO)(DPB)(DPB-P) (I), in which one DPB ligand is thought to act as a monodentate ligand [2], undergoes quantitative displacement of DPB upon treatment with a tenfold excess of $P(OC_6 H_5)_3$ in $CH_2 Cl_2$ under argon at room temperature, and that the process is catalyzed by CF_3 COOH and $H_2 SO_4$.

A very slow reaction takes place when a $10^{-2}M$ solution of I is made $10^{-2}M$ in P(OC₆ H₅)₃ (distilled twice at 1 mmHg). The relevant changes in the IR spectrum of the solution are shown in Fig. 1a. The same spectral pattern is observed with a tenfold excess of ligand, but the reaction is considerably faster and leads to the complete disappearance of the 1907 cm⁻¹ band (ν (CO) of the reacting complex) (Fig. 1b). Spectral data are consistent with the occurrence of reaction 1.

Ni(CO)(DPB)(DPB-P) + P(OC₆ H₅)₃ \rightleftharpoons Ni(CO)(DPB)[P(OC₆ H₅)₃] + DPB ν (CO) 1907 cm⁻¹ ν (CO) 1942 cm⁻¹ (1)

*To whom correspondence should be addressed.

Fig.1. Spectral changes observed during the reaction between Ni(CO)(DPB)(DPB-P) and $P(OC_6 H_5)_3$. [Ni⁰] = 10⁻² M; (a) [$P(OC_6 H_5)_3$] 10⁻² M and (b) 10⁻¹ M. Cell path 0.5 mm.

The observed increase in $\nu(CO)$ is consistent with coordination of $P(OC_6 H_5)_3$ to nickel(0) and this [3], coupled with the finding that the reaction is almost quantitative ($\approx 90\%$) when the ligand to nickel ratio is 1, confirms the validity of eq. 1.

If the reaction is carried out with $I(10^{-2} M)$ and twice-distilled $P(OC_6 H_5)_3$ ($10^{-1} M$) in the presence of CF₃ COOH $1 \times 10^{-4} - 4 \times 10^{-4} M$, the rate of disappearance of I is greatly enhanced (see Fig. 2) with the spectral features remaining the same as those in the absence of acid. Sulfuric acid is also effective but significantly less than CF₃ COOH. With $10^{-2} M$ CF₃ COOH ligand substitution is instantaneous.

We suggest a mechanism based on (a) protonation of I [4], (b) replacement of DPB-P by L in the obtained labile nickel(II) hydrido complex, and (c) reductive elimination of H⁺ to give the final product; this represents a "fast" route for ligand substitution which is an alternative to the "classic" ligand substitution mechanism [1].

This is the first example of an acid-catalyzed ligand substitution in ML_n complexes (in which the metal is Ni, Pd, Pt and L a neutral ligand). Further studies on the reaction are in progress.

References

- (a) F. Basolo and R.G. Pearson, Mechanisms of inorganic reactions, Wiley, New York, 1967; (b)
 A. Peloso, Coord. Chem. Rev., 10 (1973) 123; (c) P. Jolly and G. Wilke, The organic chemistry of nickel, Vol. 1, Academic Press, London, 1975.
- 2 B. Corain, M. Bressan and G. Favero, Inorg. Nucl. Chem. Lett., (1971) 197.
- 3 C. Tolman, J. Amer. Chem. Soc., 92 (1970) 2953.
- 4 C. Tolman, Inorg. Chem., 11 (1972) 3128.